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Abstract

The scaling up of a pilot plant fluid catalytic cracking (FCC) model to an industrial unit with use of artificial neural networks is

presented in this paper. FCC is one of the most important oil refinery processes. Due to its complexity the modeling of the FCC

poses great challenge. The pilot plant model is capable of predicting the weight percent of conversion and coke yield of an FCC unit.

This work is focused in determining the optimum hybrid approach, in order to improve the accuracy of the pilot plant model.

Industrial data from a Greek petroleum refinery were used to develop and validate the models. The hybrid models developed are

compared with the pilot plant model and a pure neural network model. The results show that the hybrid approach is able to increase

the accuracy of prediction especially with data that is out of the model range. Furthermore, the hybrid models are easier to interpret

and analyze.
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1. Introduction

Fluid catalytic cracking (FCC) is an important oil

refinery process, which converts high molecular weight

oils into lighter hydrocarbon products. It consists of two

interconnected gas�/solid fluidized bed reactors: the riser

reactor, where almost all the endothermic cracking

reactions and coke deposition on the catalyst occur,

and the regenerator reactor, where air is used to burn off

the coke deposited on the catalyst. The heat produced is

carried from the regenerator to the reactor by the

catalyst. Thus, in addition to reactivating the catalyst,

the regenerator provides the heat required by the

endothermic cracking reactions [1]. Industrial FCC units

are designed to be capable of using a variety of

feedstocks, including straight run distillates, atmo-

spheric and vacuum residua and vacuum gas oils.

They produce a range of products, which must adapt

to seasonal, environmental and other changing demand

patterns. Since FCC units are capable of converting

large quantities of heavy feed into valuable lighter

products, any improvement in design, operation or

control can result in substantial economic benefits.

FCC pilot plant units are often used to develop

accurate prediction and optimization models. The

reason is that the operation of pilot plant units can be

easily adapted under a wide range of conditions (feed

properties, catalysts operating conditions). The main

difficulty when translating the pilot scale unit observa-

tions to the commercial unit reality is to predict the scale

up effects, arisen from the small geometrical features of

pilot scale units.

Furthermore, due to the complexity of the industrial

FCC units, it is very difficult to obtain accurate models.

The complexity arises from the strong interactions

between the operational variables of the reactor and

the regenerator. Moreover, there is a large degree of
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uncertainty in the kinetics of the cracking reactions and

catalyst deactivation by coke deposition in the riser

reactor and the coke burning process in the regenerator

[2].
Artificial neural networks (ANNs) are a promising

alternative modeling technique. They are mathematical

models, which try to simulate the brain’s problem

solving approach. Neural networks have been known

for decades. The beginning of neural network research

can be traced back to the 1940s, but until the early 1980s

the research was basically theoretical and limited. The

tremendous evolution of digital technology over the past
two decades provided the necessary computational

power in order to use neural networks in various fields.

Applications of neural networks in chemical engineering

appeared in the late 1980s [3]. Some published applica-

tions of ANNs in chemical engineering are: fault

diagnosis in chemical plants [4], dynamic modeling of

chemical processes [5], system identification and control

[6], sensor data analysis [7], chemical composition
analysis [8], and inferential control [9]. Quite recently

there have been publications of applying neural net-

works in FCC modeling [10,11]. Neural networks

appear to be suitable for FCC modeling because: (a)

they can handle non-linear multivariable systems; (b)

they are tolerant to the faults and noise of industrial

data; (c) they do not require an extensive knowledge

base; and (d) they can be designed and developed easily
[3].

Neural networks can also be used as hybrid models.

The term hybrid modeling is used to describe the

incorporation of prior knowledge about the process

under consideration in a neural network modeling

approach. The way that this incorporation can be

done depends on the form of the prior knowledge

available as well as on the desired properties of the
model to be created. The two main categories are the

design approach, in which prior knowledge dictates the

overall model structure and the training approach,

which dictates the form of the weights estimation

problem [12]. This paper handles only the design

approach. A successful design hybrid modeling ap-

proach can lead for example to models with better

generalization and extrapolation abilities compared to
pure neural network models, especially when there are

only a few and noisy data for the training of the neural

models, which is often the case, when it comes to

industrial databases. For example, if the prior knowl-

edge is captured in a phenomenological or an empirical

model, then this can lead to a lower dimensionality of

the input vector used by the neural network, since some

or all of the variables that are used by this model can be
considered redundant for the neural network training.

Consequently, neural networks with fewer weights can

be applied, which is a crucial point when the data are

sparse. Furthermore, smaller neural networks require

less computational time for the training procedures.

Another advantage of hybrid models, which arises from

their internal structure, is that they can be much more

easily interpreted and analyzed than simple ‘black box’
neural networks [12,13].

In literature there exist some efforts of hybrid

modeling for the purposes of generalized on-line state

estimation [13], and for fed batch bioreactors [12,14],

but the scientific area of scaling up a pilot plant model

to a commercial unit using hybrid modeling schemes

seems not to have been explored.

In this paper a detailed kinetic�/hydrodynamic model
was developed for the simulation of the riser reactor of

the FCC pilot plant unit, located in Chemical Process

Engineering Research Institute (CPERI) in Thessalo-

niki, Greece [15]. The catalyst hold-up and its residence

time in the reactor were calculated via a comprehensive

hydrodynamic scheme and the conversion and coke

yield were successfully predicted through a Blanding

type [16] kinetic model [17]. The applicability of the
‘pilot plant model’ to the actual operation of the

industrial unit of Aspropyrgos Refinery of Hellenic

Petroleum S.A., the largest and most complex oil

refinery in Greece, is examined. Modifications are

made to the model from modeling and design perspec-

tives. A neural model trained with data from the

commercial unit is combined with this pilot plant model

in various hybrid modeling schemes and compensates
for the differences in unit geometry, feedstock quality

and catalyst properties, between the ideal operation of

the pilot plant and the reality of the commercial unit.

The structure of the paper is as follows: coupling of

hydrodynamic and kinetic theories for the FCC Unit is

presented in Section 2. Section 3 provides a description

of neural networks and of hybrid models using neural

networks. In Section 4 the pilot plant model is pre-
sented. In Section 5 there is a description of the

development of the hybrid models. Section 6 presents

the results of the best hybrid models and provides a

comparison with the pilot plant model and a simple

neural model. Concluding remarks are presented in

Section 7.

2. Coupling of hydrodynamic and kinetic theories for the
pilot and the commercial FCC unit

A model was developed to study the strong coupling

between hydrodynamics and chemical reactions that

occur in commercial and pilot FCC risers. The flow

regime in the reactor determines each phase residence

time and thereafter the kinetic conversion of the

reaction. Thus the reaction kinetics formulation should
be accomplished with a comprehensive hydrodynamic

model in order to have accurate simulation of the

process.
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The key issue when dealing with FCC fluid dynamics

is the slip velocity between the gas and solids fractions.

Generally, for commercial units with large diameters it

is a common practice that the gas�/solids slip velocity is
assumed to be close to the single particle terminal

velocity and slip factors are relatively small, whereas

according to the literature the slip velocity is always

greater than the single particle terminal velocity [18�/20].

The general idea of using the terminal velocity instead of

the slip velocity is correct only in case of great gas

velocities and low solids mass flow rates [18] and delivers

slip factor values close to unity. In practice, the knowl-
edge of the exact value for the slip velocity in commer-

cial units provides more accurate results for the

determination of the hydrodynamic characteristics of

the process and finally for the kinetic parameters

estimation (each phase residence time and the space

velocity). Understanding the operation of small dia-

meter units (such as pilot plant units), where slip effects

become much more important and influence signifi-
cantly the kinetic and hydrodynamic features of the

cracking process, provides the knowledge for an inte-

grated commercial unit simulation.

Regarding the kinetic aspects of the cracking process

it is well accepted that the cracking reaction proceeds

according to second-order rate kinetics [17,21,22]. Con-

sidering riser reactor conditions with concurrent plug

flow of gas and solids phases, the final expression for the
conversion of hydrocarbons during the FCC process

would be of a form of Eq. (1) [21]:

dx

dt
�kf(c)(100�x)2; (1)

where t is the space time (catalyst hold-up/feed rate), x

is the wt.% conversion of the hydrocarbons, c is the

coke content wt.% on catalyst and f(c ) is the catalyst

deactivation function expressed by Eq. (2) [23]:

f(c)�kcc
1�1=b: (2)

The value of b in Eq. (2) indicates the catalyst decay

constant and is found in literature to vary from 1/3

[23,24] to 1/4 [22] or even 1/6 [25]. The coke build-up

rate function is supposed to be the same with the

catalyst deactivation function [21,23]. Thus for the rate

of coke build-up, an equation of the form [23] applies:

du

dt
�

kc

b

�
C

O

�1=b�1

u1�1=b: (3)

Here u is the coke yield in wt.% on fresh feed. In this

work the coke build-up rate is assumed to follow the

conversion correlation and the total coke produced is
assumed to be equal to the catalytic coke described in

Eq. (3). Thus, coke selectivity is not a function of the

catalyst to oil ratio or coke on regenerated catalyst, but

is only a function of temperature, catalyst and feed

properties.

When appropriate transformations and substitutions

are made to Eq. (1) the final correlation for the mixture
reaction conversion can be expressed as follows:

x

100 � x
�K

C

O
tb

c �K
1

WHSV
tn

c ; n�b�1: (4)

In Eq. (4) it is clear that the product of conversion times

space velocity is an exponential function of contact time
for given feed and catalyst properties and constant

reactor temperature. A strategy often applied for

validating the correct operation of an FCC unit, or the

correctness of the hydrodynamic regime assumed, is

plotting Eq. (4) on logarithmic scale.

ln

�
x

100 � x
WHSV

�
� ln(K)�n ln(tc): (5)

The left hand side of Eq. (5) is a linear function of ln(tc)

for given catalyst, feed and constant temperature. The

slope of this linear dependence would be n , or better b�/

1, the power in coking rate expression. The same

correlation is assumed to apply for the coke yield and

the same exponential dependence should be verified.
Under this concept Eq. (5) for the coke yield would be

an expression like Eq. (6):

ln(coke wt:% �WHSV)� ln(kc=b)�n ln(tc): (6)

The development of the kinetic theory for the crack-

ing process is identical for both the commercial and the

pilot unit, since the occurring cracking reactions are

exactly the same. Differences in the hydrodynamic
attributes of each reactor correspond only in different

kinetic parameters estimations.

3. Neural networks theory

3.1. Neural networks description

ANNs consist of a large number of simple computing

elements, called nodes or neurons, which are arranged in

layers. There are three types of layers: the input layer,

the output layer and the hidden layer. The number of
hidden layers varies from network to network and in

some cases there is no hidden layer. Typically one

hidden layer has been found to be sufficient in most

applications [3,26].

Nodes of one layer are connected to the nodes of the

next layers. A real valued number called ‘connection

weight’ or simply ‘weight’ is associated with each

connection. The role of the weights is to modify the
signal carried from one node to the other and either

enhance or diminish the influence of the specific

connection.
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Nodes in the input layer are not associated with any

calculations. They act as distribution nodes. The outputs

from the output layer represent the network’s predicted

outputs. The function of any node in the hidden and
output layer is to receive a number of inputs from the

previous layer, sum the weighted inputs plus the bias,

non-linearly transform the sum via an activation func-

tion (i.e. Tanh or Logistic) and finally broadcast the

output either to nodes of the next layer or to the

environment [1].

There exist many network architectures [27]. In this

work multi-layer perceptron (MLP) networks, with
hyperbolic tangent (tanh) as activation function of

hidden nodes and linear transformation as activation

function of output nodes, are considered. In this type of

network the nodes of one layer are fully or partially

connected only to the nodes of the next layer of the

network and there is no feedback of the output signals

(feed-forward) [3].

The steps involved in every effort to build a function-
ing ANN model of an industrial process are: (a) data

collection; (b) data preprocessing; (c) model selection;

and (d) training and validation. The ANNs used in this

study were trained using the EBP (Error-Back-Propaga-

tion) algorithm and the determination of optimum

number of nodes in the hidden layer was carried out

by a trial and error procedure based on cross validation.

In the cross validation method, various network archi-
tectures (which are produced by changing the number of

nodes in the hidden layer) are constructed. Each one of

them is trained several times with different initial values

of weights in order to find the combination of weights,

which produces minimum output error for a validation

data set. In the end, all network architectures are

compared and the one with the minimum error is

selected as optimum [1].

3.2. Hybrid modeling

In this paper two different hybrid-modeling schemes

are implemented. They both belong to the design semi
parametric approaches [12], namely they both try to

correct the inaccuracy of an existing model, which is

considered to contain our prior knowledge regarding to

the process under consideration, by using a neural

network, which is trained to compensate for this

inaccuracy.

Let us assume that the phenomenological or empirical

model in hand is described in general by the following
functional form:

y� f ( �x; �c); (7)

�c�g( �a); (8)

where �x is the vector of the variables that the model uses

to predict the variable y , �c is the vector of the constants

which are included in the functional form and �a is the

vector expressing the assumptions made during the

construction of the model.

Even if we assume that the particular functional form

expresses the influence of the variable vector in every
detail, there are still some limitations in the general

implementation of the model, due to the assumptions

made. These often influence the estimation of the

constant vector (Eq. (8)). This can lead to inaccurate

predictions, when the model is implemented in cases,

where some of the assumptions do not any more apply

and therefore the values of the constant vector are not

any more appropriate. Sometimes this problem can be
rather easily overcome by simply recalculating the

constant vector for the new conditions. This presup-

poses that the relation between the constant vector and

the assumptions made is either known or its functional

form is predefined and all it remains is adapting the

constants of this new relation, for instance by using

regression analysis. But in cases, where our knowledge

for this relation is very limited, the completion of the
model based on Eq. (1) by a neural model is a very

promising alternative.

In principle this can be done in a parallel (Figs. 1 and

2) or in a serial approach (Fig. 3). In the parallel

approach the first step is to estimate the difference Di

between the prediction Pi of the model based on our

prior knowledge (P-K model) and the experimental

measurement Mi for all the i-measurements available:

Di�Mi�Pi: (9)

Referring to Fig. 1 this difference is the target residual

for the neural model, namely the neural model is trained

to calculate this residual.
The second step is to define the variables that will be

used to perform this task. All or some of the available

variables can be used as input variables (Variables Set-

2). If we are certain that all of the information contained

in the variables used in the P-K model (vector �x;
Variables Set-1) is captured in it, then these variables

are redundant for the neural network training procedure

and can be left aside. An Entropy of Information
analysis may be applied [28,29] to certify such a decision

(see Appendix A). Furthermore, if different scenarios

concerning the variables used to predict the target

residual are applied, then the combination of the created

Fig. 1. A hybrid model according to the parallel design approach. The

neural model is trained on the difference (residual) between the

prediction of a prior knowledge model (P-K model) and the experi-

mental prediction.
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neural models is proposed instead of choosing the best

of all cases (Fig. 1). To be more exact, for each one of

the j-scenarios a neural model is obtained following the

method described in Section 3.1. This model is able to

calculate as output a j-residual (/ �Rj); which is an

approximation of the true residual (/ �Dj): The vectors

�Rj; �Dj consist of all the i-measurements. These j-neural

models are not only different in the variable set they are

using, but also probably in the number of the neurons in

the hidden layer and the number of the epochs that were

used for their development. These last two training

parameters depend on the algorithm used to find the

optimum neural network architecture for each one of

the j-scenarios. Because of the difference in the archi-

tectures of these j-neural models, it is very likely that

each one tries to approximate the true residual (/ �D) from

a different point of view. This makes a combination of

all the cases more beneficial than choosing the best-case

scenario. For the combination of neural models a neural

network combiner is used. Neural network combiners

perform among the best possible combiners although it

complicates the procedure more than other simple linear

combiners.

So the outputs of these j-neural models are then used

as inputs to a new neural network, which is trained to

achieve a better approximation of the true residual (/ �D):

Depending on the number of scenarios applied, some or

all of them may be combined. The selection can also be

supported by an Entropy of Information analysis [29].

In both cases of this parallel design approach (Figs. 1

and 2) the residual (/ �R); which is calculated by the neural

part of the hybrid model, is added to the prediction of

the P-K model (/ �P) to give the final prediction (/ �F ) of the

hybrid model:

�F � �P� �R: (10)

All the vectors referred in Eq. (10) have the i -measure-

ments as arguments.

In the serial design approach the neural model part is

used to calculate the new values of the constant vector

and more specifically to approximate the function (g ) in

Eq. (2) (Fig. 3). It is assumed that in Eq. (2) the vector of
the assumptions (/ �a) refers to variables, which were kept

constant or were ignored during the construction of the

P-K model and therefore their influence has not been

adequately evaluated. Because of variation of these

variables in the process under consideration, the con-

stant vector (/ �c) needs to be re-estimated. According to

this, the first step in this approach will be to solve Eq. (1)

and obtain the appropriate values of the constant vector
(/ �cii) by replacing the actual experimental values in the

variables y , �x for all the i-measurements. These are the

target values, which the neural model will try to

approximate. The second step is similar to the one

made for the parallel approach, that is the selection of

the variables used as input variables for the neural

network during the training procedure (Variables Set-2

referring to Fig. 3). Once again different scenarios can
be used and the Entropy of Information analysis can be

a valuable tool for the selection of variables as well as

for the choice of scenarios that will be combined to

produce the final prediction of (/ �c):/

4. The pilot plant model formulation*/application to the

commercial unit

The model developed in this study was based on the

experiments performed in CPERI FCC pilot plant unit.

An analytical description of the CPERI FCC pilot plant
and the formulation of the model developed to simulate

it can be found in literature [15,17]. For the scale-up of

the pilot model to the actual commercial conditions

(different geometry, higher flow rates, variable feed and

catalyst properties etc.) adjustments were applied to the

model for the better representation of the industrial

process.

The main difference between the pilot and the
commercial unit arises from the differences in geometry.

In small diameter FCC risers gas and solids rise with

different velocities, corresponding to different residence

Fig. 2. A hybrid model according to the parallel approach combining more than one neural models to calculate the residual.

Fig. 3. A hybrid model according to the serial approach. The neural

model is trained to approximate the new values of �c; which will be used

from the P-K model to produce a more accurate prediction (hybrid

prediction).
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times for each phase. This ‘slip phenomenon’ can be

described by the ‘slip factor’ concept used to ascribe the

back-mixing in the riser reactor. The slip factor stands

for ts/tg, or ug/us [19,20] with g and s representing the gas
and solids phase, respectively. The slip factor is a feature

rarely reported in the scientific literature and empirical

correlations for the determination of slip effects in CFB

risers are not often published. A widely used empirical

correlation for the slip factor estimation in circulating

fluidized bed risers was proposed by Patience et al. [19].

They suggested that the ‘slip phenomenon’ is indepen-

dent of the gas properties and solids characteristics at
gas velocities much greater than the terminal velocity,

but is a function of the riser diameter, gas volumetric

flow and solids terminal velocity. Later, Pugsley and

Berruti [30] noted that the correlation of Patience et al.

[19] over-predicts the average solids holdup and pro-

posed an improved expression (Eq. (11)):

y�1�
5:6

Fr2
�0:47Fr0:41

t : (11)

In Eq. (11) Fr and Frt are the Froude numbers for the

superficial gas and terminal velocity, respectively and y

the slip factor.

The comparison of the slip factor dependence on

superficial gas velocity as it is estimated from Eq. (11),

for the fully developed flow region of the pilot and the

commercial unit is shown in Fig. 4. The inverse

proportion of slip factor with superficial gas velocity is

obvious in Fig. 4 and is consistent to Patience et al. [19]

and Pugsley and Berruti [30] observations.
With the average slip factor known, the average

reactor voidage can be easily calculated. Commonly,

for commercial risers, by knowing the average reactor

voidage, the total pressure drop can be directly esti-

mated, since the static head of solids is the dominant

pressure gradient. However, including every pressure

gradient in the pressure balance analysis should provide

more accurate description of the actual flow regime for

both the pilot and the commercial unit. For this analysis

all pressure gradients must be taken into account and

the following expression is valid [17]:

DP�DPfg�DPfs�DPacc�orggDz

�(1�o)rpgDz; (12)

where DPfg is the gas-wall frictional pressure drop; DPfs,

solids-wall frictional pressure drop; DPacc, pressure drop

due to solids acceleration.

In the commercial unit the pressure drop measure-

ments are used for the estimation of the dense zone

height, where the flow regime is assumed to follow the
‘Dense Suspension Upflow’ reported by Grace et al.

[31]. For this dense region the feedstock is assumed

unconverted (in terms of molar expansion) and the total

volumetric flow and the superficial velocity are signifi-

cantly lower. The height of this dense region is

computed around 5% of the total riser height.

Applying the ‘pilot plant model’ to the commercial

unit after implementing the adjustments described above
was a complicated task. The commercial unit operates

under non-steady feed and catalyst properties and the

consistency of the kinetic model can not be verified just

by plotting Eq. (5). The reactor temperature varies

within 980 and 995 8F, so the constant temperature

hypothesis used for the pilot unit model development is

incorrect in the case of the commercial unit. Changes in

feedstock and catalyst supply correspond to different
pre-exponential factors in the Arrhenius type formula-

tion of the K constant in Eq. (5) and differences in

temperature correspond to different values of K . In

order to examine the consistency of the kinetic model

applied to the commercial unit Eq. (5) should be

reordered to the form of Eq. (13):

ln

�
x

100 � x
WHSV

�
� ln(ko exp(�E=RT))

�n ln(tc); (13)

where the pre-exponential factor ko and the activation

energy E of the cracking reaction should be estimated

via the hybrid scale-up procedure proposed. For the

implementation of the model to the commercial unit the
values of activation energy E and the catalyst decay

constant n were estimated 24.800 Btu/lbmol/R and 0.72,

respectively (Fig. 5).

Similarly for the coke yield prediction Eq. (6) can be

rewritten for the commercial unit:

ln(coke wt:% �WHSV)� ln(kco exp(�E=RT))

�n ln(tc): (14)

The applicability of the pilot plant model to the
commercial data for the coke yield prediction appears

excellent. The coke build-up decay constant for the

commercial unit is now calculated at the value of �/1
Fig. 4. Slip factor dependence on superficial gas velocity for the

commercial and the pilot unit (fully developed flow region).
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and the activation energy for the coke production is

1660 Btu/lbmol/R (Fig. 6).

The agreement of the pilot and commercial units

appears quite satisfactory and the proposed hydrody-

namic scheme represents both units correctly. The

scatter of the commercial model outputs should be
refined via a neural network combinational procedure,

in order to invoke the influence of variable feed and

catalyst properties and scale-up factors for the transition

from the ‘pilot plant model’ to the industrial reality.

5. The neural scale-up (hybrid model development)

In this paper the hybrid modeling schemes mentioned

in Section 3 were used for the needs of the scaling up of

the pilot plant model already described in Section 2.
This model takes the place of the P-K model in Figs. 1�/

3. It is able to predict the conversion (wt.%) of the FCC

process using some of the operational variables, which

are the vector �x referring to the analysis made in Section

3. The assumptions (vector �a) of the model are that the

feed and catalyst properties of the unit are constant.

These assumptions are included in the estimation of the

constant ko (Eq. (13)), that is the (/ �c) vector in our case.

When we apply this model to the industrial database, a

difference between the predictions of the model and the
experimental measurements is being remarked. Our

hypothesis is that the main reason for this difference is

the variation in the feed and catalyst properties as well

as the scale up factors.

The variables that are included in the database are

shown in Table 1a. For the needs of the hybrid modeling

some additional ‘variables’ must be constructed. Speci-

fically for the parallel design approach the input
variables that concern feed or catalyst properties are

shown to the neural network as differences (DVj), which

are defined in Eq. (15):

DVj �Vj�Vpj: (15)

where Vj is the actual value of the property j in the

industrial database, Vpj is the constant value of the

property j during the construction of the pilot plant

model and DVj is the difference between these two
values. Furthermore, the neural part tries to approx-

imate the difference between the experimental conver-

sion and the conversion calculated from the pilot plant

model based on some or all of the above input variables.

For this to be done these differences must also be

calculated for all the runs available (see Eq. (9)). The set

of the target output variables of the neural network

consists of these differences.
In the serial approach the neural part of the hybrid

has the task to calculate the values of the constant ko

(Eq. (13)) for every run available. To be more precise it

is trained to calculate the ln ko value. Because of the

change in feed and catalyst properties in every run ko

has not anymore a constant value as it was assumed

during the development of the pilot plant model, where

the feed and catalyst properties were kept constant. The
values of the ln ko, which the neural part must approx-

imate were calculated using for all the variables included

in Eq. (13) the respective experimental values in the

database. In the serial design approach no transforma-

tion like the one made in Eq. (15) is performed for the

input variables used by the neural part.

As we have described in Section 3 the next important

step for the training of the neural part of the hybrids is
to define which input variables will be used. Referring to

the pilot plant model, we can separate the variables

shown in Table 1b in three categories: variables that

were kept constant during the construction of the pilot

plant model but they are included in the model

(Variables 1�/4), variables that were kept constant

during the construction of the pilot plant model but

they are not included in it (Variables 10�/13) and
variables that were included in the pilot plant model

and their variation is believed to be satisfactorily

explained by it (Variables 5�/9).

Fig. 5. Experimental data fit with model results for kinetic conversion

(commercial unit).

Fig. 6. Experimental data fit with model results for coke (commercial

unit).
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For the needs of the parallel design approach we have

built the four scenarios, which are presented in Table 1b

as far as the neural part of the hybrid is concerned.

Specifically:

. PHybrid1 uses only those variables, which are

referring to feed and catalyst properties. It is assumed

that the pilot plant model does not totally capture the

influence of the variables 1�/4, although they are

included in it (see Section 2), since the effect of feed

properties and catalyst quality is included in the pilot

plant model only from their hydrodynamic perspec-

tive and their actual influence on the cracking

reaction may be underestimated, when apply the

pilot plant model to the commercial data. So they

are used together with the variables 10�/13 to predict

the residual.

. PHybrid2 uses only the variables 10�/13. It assumes

that the pilot plant model satisfactorily expresses the

influence of the variables 1�/4.

. PHybrid3 uses the Entropy of Information Analysis

(results of this analysis are presented in Appendix A)

considering all the 13 variables as possible input

variables for the neural model. The six best variables

that this analysis proposes are selected (Table A2(a)).

Two of the operational variables (feed rate and CCR)

are included in these six variables. This can have the

following theoretical basis. Inaccuracies in the appli-

cation of the empirical equation of Pugsley and

Berruti [30] to the commercial unit and in the

pressure balance formulation, could influence the

prediction of slip effects on the commercial unit.

Thus the flow rates of gas�/oil and catalyst were

included in the hybrid model, in order to examine if

better predictions are accomplished.

Table 1a

The variables that were used in each one of the hybrid models

No. Variables Pilot plant PHybrid1 PHybrid2 PHybrid3 PHybrid4 SHybrid1 SHybrid2

1 Specific gravity U U NU U U U U

2 MeABP U U NU U U U U

3 APS U U NU NU NU U U

4 ABD U U NU NU NU U U

5 CCR U NU NU U NU NU U

6 Reactor temperature U NU NU NU NU NU NU

7 Reactor pressure U NU NU NU NU NU NU

8 Feed rate U NU NU U NU NU U

9 Riser inject steam U NU NU NU NU NU NU

10 Sulfur NU U U NU U U U

11 Basic N2 NU U U NU U U U

12 RI NU U U U U U U

13 MAT NU U U U U U U

U means that the variable is used in the model and NU that the variable was not used.

Table 1b

The limits of the available variables in the training and the extrapolation set

Variable Units Training set Extrapolation set

Min Max Min Max

Specific gravity (SG) 0.900 0.921 0.901 0.917

Mean average boiling point (MeABP) 8C 437.8 469.4 438.3 463.3

Average particle size (APS) microns 72.0 84.0 73.8 83.0

Apparent bulk density (ABD) G/ml 0.87 0.94 0.88 0.93

Catalyst circulation rate (CCR) m3/h 18.3 21.5 17.8 22.0

Reactor temperature 8C 529.5 535.9 528.8 536.0

Reactor pressure kp/cm2 2.2 2.5 2.2 2.5

Feed rate tn/h 239.9 280.5 235.8 283.6

Riser inject steam kg/h 2852 3300 2898 3322

Sulfur (S) wt.% 0.29 1.85 0.32 1.46

Basic N2 wppm 104 381 112 241

Refractive index (RI) 1.48331 1.49180 1.48367 1.49060

Micro activity test (MAT) 66 75 66 73

Conversion wt.% 69.06 77.81 70.53 77.81
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. PHybrid4 uses the Entropy of Information Analysis

considering this time only the variables referring to

feed and catalyst properties. The six best variables

that this analysis proposes are selected (Table A2(b)).

These four scenarios are used for the combination

procedure described in Section 3 (Fig. 1). The hybrid

model that is produced according to this scheme will be

referred as PHybrid5 from now on.

For the needs of the serial approach we have

considered the following two scenarios as far as the

neural part of the hybrid is concerned (see Table 1a):

. SHybrid1 uses the same variables set as PHybrid1.

. SHybrid2 uses additionally the two operating vari-
ables that were indicated by the Entropy of Informa-

tion Analysis, namely the feed rate and the CCR.

Finally a hybrid model identical to SHybrid2 was

created to predict the coke yield. This model will be

further named CokeSHybrid in this paper. It uses the

same variables that the SHybrid2 uses for the neural

part and also has the same architecture. The difference

for the neural part is that it now tries to approximate the

ln kco value, which is now referred to Eq. (14). This

equation using the new adapted values of ln kco for

every run predicts the coke yield. The data that were

used for the coke yield concern the same runs that were

mentioned above as well as their partition in the four

data sets. This model was created to test the applic-

ability of the method in another important parameter of

the FCC unit such as the coke yield, which is however

oscillating in a much smaller range compared to the

conversion of the unit.

The data sets for the models development was based

upon industrial data provided by the Aspropyrgos

Refinery of Hellenic Petroleum S.A. (Athens). The

data set was collected every 1 day for a period of 15

months. In selecting data for model building, however, it

is important to ensure that it represents normal operat-

ing states to avoid spurious predictions from unusual

conditions. So, blocks of data corresponding to process

faults were excluded from the study. Also, outliers that

may have been caused by some measurement errors were

removed. A simple outlier detecting method was fol-

lowed, where any observation that differ more that three

standard deviations from the mean is removed from the

set [1]. As a result, a set of 308 observations, represen-

tative of various operating conditions and a broad range

of the input variables, were used for the development of

the models.

The available 308 runs were separated in four data

sets. The training and the validation set (178 and 50

runs, respectively) were used for the needs of the

training algorithm (Section 3). The generalization set

(50 runs) is used for the testing of the models, when all

the variables interpolate. The extrapolation set (30 runs)

is used for the testing of the models, when some of the

operational variables extrapolate. We have let only the

operational variables to extrapolate for two reasons.

The first is that their effect is supposed to be mainly

captured by the pilot plant model and we wanted to see

how far this is helping the extrapolation abilities of the

hybrid model, in which this prior knowledge is included.

The second is that if we had let more variables to

extrapolate that would lead to a greater extrapolation

set and the other sets would have to be reduced, that

could seriously affect the training procedure of the

neural networks. The maximum and minimum values

of all the variables for all the sets are shown in Table 1b.
After this partition of the sets, the values of the

variables were normalized. Both for the input and

output variables a linear normalization based on the

training set was used. After the normalization all the

variables have values belonging to the interval [�/1, 1].

In addition to the seven hybrid models presented

above a typical ‘black box’ neural model using all the

variables was created, so that the results from the hybrid

modeling approaches could be compared to a more

typical method. This neural model is referred from now

on as simple neural (SN).
During the training procedure of each neural model it

was paid attention to the fact that all the neural

networks must have less than 50 weights, including the

weights of the biases. This limitation arises from the

number of available industrial runs. Specifically, we

have tried to experiment with ‘data to parameters ratios’

greater than 3.5. This has defined the upper limit for the

number of weights in the hidden layer during the

training procedure. Only the case of one hidden layer

was tried, since it is proved that one hidden layer is

enough for approximating continuous functions [26]. In

all cases we have achieved ratios greater than 4 for the

‘winner’ neural models except from the case of the SN,

which is due to the fact of the 13 input variables (Table

2). Furthermore, no neural model was trained for more

than 20,000 epochs.

The structure of each of the eight neural models that

were trained using this procedure is presented in Table 2.

Table 2

The structure of the ‘winner’ neural network models

Neural model Structure Weights Ratio

Simple neural 13�/3�/1 46 3.9

PHybrid1 8�/4�/1 41 4.3

PHybrid2 4�/7�/1 42 4.2

PHybrid3 6�/5�/1 41 4.3

PHybrid4 6�/5�/1 41 4.3

PHybrid5 4�/5�/1 31 5.7

SHybrid1 8�/4�/1 41 4.3

SHybrid2 10�/3�/1 37 4.8
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In the column named ‘structure’ the first number

indicates the number of the input neurons, which is

predefined by the choice of variables used, the second

number indicates the number of neurons in the hidden
layer for the ‘winner’ neural model and the third number

the number of neurons in the output layer, which is

always 1. This is so, because the target variable was in

the SN approach the conversion itself, in the PHybrid1

to PHybrid5 approaches the difference between the

experimental conversion and the predicted from the

pilot plant model and finally in the SHybrid1 and

SHybrid2 approaches the constant ln ko of the pilot
plant model.

6. Results and discussion

In this section we describe at first the results that all

the models give when they attempt to predict the

conversion of the commercial unit. At the end of this

section we also verify the applicability of the hybrid

approach to the prediction of the coke yield of the unit.

We use the generalization and the extrapolation set

for the comparison between the models, because these
two sets have in no way affected the training procedure

of the neural parts in the hybrid models. Therefore, in

these two sets the true abilities of the models are shown.

In all the figures the x -axis has the experimental

values and the y -axis the predictions. We use two lines

to show the success of the prediction. The one is the line

with equation y�/ax�/b with a�/1 and b�/0, on which

all the data of an ideal model should lay. The other line
is the line that best fits on the data of the scatter plot and

it is obtained with regression analysis based on the

minimization of the squared errors.

The correlation factor of this line is also presented

(R2). The closer to 1 this factor is and the closer the

coefficients of the line to 1 and 0, respectively, are the

better the model is.

In Figs. 7 and 8 we present the results for the pilot
plant model. The results for the other two sets (training

and validation set) are similar, since this model has not

in any way used the commercial data for its develop-

ment. These results are considered satisfactory if one

takes into account the constancy of the pilot plant

experimental runs and the multivariation of an actual

commercial unit operation. This fact supports the

assumption that this model can be successfully used as

the prior knowledge model, which with the assistance of

a neural part will result to an integrated hybrid model

with excellent results.

In Figs. 9 and 10 the results of the simple neural

model are presented. Compared to the pilot plant model

the Simple Neural Network approached gives better

results as expected, since it is trained with data of the

specific commercial unit.
The results for the best of the four scenarios used

according to the parallel design approach are presented

in the Figs. 11 and 12. These figures verify the statement

made before about the excellence of the results of the

hybrid modeling. Much more if we take into account

that we have to deal with real industrial and therefore

‘noisy’ data. In Figs. 13 and 14 the results for the best of

the two scenarios used in the serial design approach are

presented. The two approaches do not seem to have

many differences as far as the accuracy is concerned,

although the parallel design approach seems to general-

Fig. 7. Scatterplot of measured against predicted values of conversion

using the pilot plant model (generalization set).

Fig. 8. Scatterplot of measured against predicted values of conversion

using the pilot plant model (extrapolation set).

Fig. 9. Scatterplot of measured against predicted values of conversion

using the simple neural model (generalization set).
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ize a little better as it can be seen in the coefficients of

the ‘best fit’ line.

In Figs. 15 and 16 we present the results for the

parallel design approach when the best models for each

one of the four scenarios are combined. Once again the

accuracy of this hybrid is excellent. Compared to the

best of the four scenarios this method seems to give

more stable results, since its ‘best fit’ line has similar

coefficients but with greater correlation factor (0.91�/

0.83).

Comparing the results of the standard ‘black box’

neural network approach to the best hybrid modeling

approaches we can see that the accuracy of the standard

neural model is similar to the hybrids in the general-

ization set, but as expected it starts getting worse in the

extrapolation set. On the other hand, the hybrids seem

to be more stable in the results they give for the two sets.

This indicates a trend, which would be clearer, if we

were able to implement a more intense extrapolation.

Fig. 10. Scatterplot of measured against predicted values of conver-

sion using the simple neural model (extrapolation set).

Fig. 11. Scatterplot of measured against predicted values of conver-

sion using the best of the parallel hybrid models (generalization set).

Fig. 12. Scatterplot of measured against predicted values of conver-

sion using the best of the parallel hybrid models (extrapolation set).

Fig. 13. Scatterplot of measured against predicted values of conver-

sion using the best of the serial hybrid models (generalization set).

Fig. 14. Scatterplot of measured against predicted values of conver-

sion using the best of the serial hybrid models (extrapolation set).

Fig. 15. Scatterplot of measured against predicted values of conver-

sion using the combination of the parallel hybrid models (general-

ization set).
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Unfortunately, this is a limitation arising from the fact

that we are working with industrial data.

In Tables 3�/6 some of the most commonly used

statistical pointers are presented for all the sets used and

for all the models created. In these tables the R2 and A ,

B are the correlation factor and the coefficients con-

cerning the ‘best fit’ line as described above. MSE is the

Mean Square Error, ARE is the Average Relative Error

(%) and MaxRE is the Maximum Relative Error (%)

(Table 1a).

As far as the different hybrids in the parallel design

approach are concerned, we can see in these tables that

although the approaches using the Entropy of Informa-

tion analysis for defining the input variables did not

result to more accurate hybrids, they did give us the

chance to have more than one scenarios, which after

their combination resulted to a better model. Since the

serial and the design approaches do not seem to have

many differences in their final results, it can be assumed

that this combination scheme proposed could also be

applicable in a serial design approach.

Furthermore, all the hybrids have an ARE less than

1% in the generalization set and the best of them have

the same level of accuracy in the extrapolation set too,

which is a significant improvement compared to using

only the pilot plant model. An exception to this behavior

is the PHybrid1 model, which seems to suffer from over-

fitting problems (it gives a MSE of 0.1 and a ARE of 0.3

on training data but a MSE of 0.8 and ARE of 0.9 on
the generalization data). However, the good general-

ization performance of the PHybrid5 model (which

combines the four hybrid models, including PHybrid1)

shows that the combiner successfully eliminates the

disadvantages of the PHybrid1 model. From this point

of view the effort of scaling up this pilot plant model to

the commercial unit using the concept of hybrid model-

ing has been proved successful.
The differences between the hybrids are few, but the

overall best model seems to be the one that combines the

four scenarios in the parallel design approach. We must

point out the fact, that among the best models seem to

be one model (namely the SHybrid2), which uses two of

the operational variables (feed rate and CCR) to fit the

pilot plant model on the industrial data. This can be an

indication that the hydrodynamic description of sleep
effects in the commercial unit and the assumptions used

in the commercial model formulation do not describe

the actual industrial reality with the desired accuracy.

We must also point out the fact that the superiority of

the hybrid models compared to a simple ‘black box’

neural network approach should not be only restricted

to the level of the accuracy of the predictions, but also

the aspect of interpretability and stability of the models
should also play an important role.

At last in 17�/20 the coke yield prediction for the pilot

plant model and one of the best hybrid models

(SHybrid2), described in Section 5, are presented. The

predictions of the pilot plant model (Figs. 17 and 18)

were extremely good, if one takes into account the

variability of feed and catalyst properties of the

industrial data. The hybrid approach corrected the
prediction average error by 0.3% for the generalization

and extrapolation sets (Figs. 19 and 20). Considering the

very low oscillation of the coke yield of the commercial

unit and the accuracy of the pilot plant model predic-

tion, the improvement of the hybrid approach appears

Fig. 16. Scatterplot of measured against predicted values of conver-

sion using the combination of the parallel hybrid models (extrapola-

tion set).

Table 3

Results of models for training data set

Training

MSE R2 (trendline) A (trendline) B (trendline) ARE (%) MaxRE (%)

Pilot plant 2.1 0.62 0.37 45.9 1.5 4.7

Simple neural 0.3 0.92 0.92 5.5 0.6 2.3

PHybrid1 0.1 0.98 0.97 2.0 0.3 1.3

PHybrid2 0.5 0.88 0.88 8.9 0.7 4.0

PHybrid3 0.5 0.88 0.86 10.6 0.8 4.4

PHybrid4 0.4 0.91 0.89 8.4 0.7 3.2

PHybrid5 0.2 0.96 0.96 2.9 0.4 1.8

SHybrid1 0.2 0.96 0.94 4.1 0.5 1.8

SHybrid2 0.2 0.94 0.93 5.1 0.5 1.9
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satisfactory. The fact that the behavior of this model

yield is similar compared to the model predicting

conversion, is an indication that the prediction of the

other product yields (gasoline, LPG, etc.) can also be

realized in the same way. Therefore, one of the tasks

planned for the future is to develop and test such

models, when commercial data will be available.

7. Conclusions

In this effort we have presented nine models concern-

ing the prediction of the conversion of a FCC unit. One

of them was created based on the experiments carried on

a pilot plant, another one was created based only on the

industrial data using a typical ‘black box’ neural net-

work approach and the rest models were hybrid models.

The hybrids consist of two parts: the pilot plant model

part, which gives the basis for the prediction and the

Table 4

Results of models for validation data set

Validation

MSE R2 (trendline) A (trendline) B (trendline) ARE (%) MaxRE (%)

Pilot plant 1.1 0.60 0.42 42.3 1.1 3.9

Simple neural 0.4 0.87 0.85 10.8 0.7 2.2

PHybrid1 0.3 0.90 0.97 2.5 0.5 1.9

PHybrid2 0.4 0.85 0.86 10.6 0.7 1.8

PHybrid3 0.4 0.85 0.84 11.7 0.7 1.7

PHybrid4 0.3 0.87 0.86 9.9 0.6 2.1

PHybrid5 0.1 0.95 0.95 4.0 0.4 1.3

SHybrid1 0.3 0.88 0.90 7.4 0.6 2.0

SHybrid2 0.3 0.88 0.83 12.5 0.6 2.3

Table 5

Results of models for generalization data set

Generalization

MSE R2 (trendline) A (trendline) B (trendline) ARE (%) MaxRE (%)

Pilot plant 2.0 0.65 0.40 43.6 1.4 5.1

Simple neural 0.5 0.89 0.89 7.8 0.7 2.7

PHybrid1 0.8 0.83 0.95 3.7 0.9 3.9

PHybrid2 0.7 0.83 0.86 10.2 0.9 2.9

PHybrid3 0.7 0.83 0.82 13.0 0.8 3.8

PHybrid4 0.6 0.87 0.80 14.5 0.8 3.8

PHybrid5 0.4 0.91 0.92 5.9 0.7 2.1

SHybrid1 0.6 0.87 0.88 9.0 0.8 2.5

SHybrid2 0.4 0.90 0.86 10.1 0.7 2.2

Fig. 17. Scatterplot of measured against predicted values of coke yield

using the pilot plant model (generalization set).

Fig. 18. Scatterplot of measured against predicted values of coke yield

using the pilot plant model (extrapolation set).
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neural model part, which tries to refine this prediction,

so that the influence of variable feed and catalyst

properties as well as scale up factors are taken into

account. These two parts were combined in various

hybrid-modeling schemes resulting to seven different

hybrids.

The results of all the hybrids have shown that the

method proposed here has been proven successful. The

already satisfactory predictions of the pilot plant model

are clearly refined since the hybrid models predict the

conversion of the commercial unit with less than 1%

average relative error, namely they have reached the

limitations of the experimental error. Furthermore, the

comparison between the hybrids has shown that parti-

cularly promising is the technique, which combines

various scenarios as far as the neural part of the hybrid

model is concerned.

The comparison between the standard ‘black box’

neural network approach and the hybrid modeling

approach has shown that the best of the hybrid

scenarios generalize slightly better and extrapolate

clearly better. The reason for this is the pilot plant

model part of the hybrids. The superiority of the hybrids

for the extrapolation properties is assumed to become

clearer, as the extrapolation becomes more intense. Our
industrial database did not permit such an intense

extrapolation, but this trend has become clear, even

under the mild extrapolation conditions that were

applied.

Finally, it is important to be noticed that the

advantages of the hybrid models compared to the ‘black

box’ neural networks do not only concern the accuracy

of the predictions but also the interpretability of the
model, which is a crucial point when the created model

is used for the study of the behavior of the process and

for optimization purposes.

Appendix A: Entropy of information analysis

Let X be a random variable with a set of s possible
outcomes {x1, x2, . . ., xs}. If N is the number of cases in

a data set that we have for this variable, and Ni is the

number of cases, in which X�/xi , then the probability of

Table 6

Results of models for extrapolation data set

Extrapolation

MSE R2 (trendline) A (trendline) B (trendline) ARE (%) MaxRE (%)

Pilot plant 3.3 0.66 0.52 34.5 1.5 3.5

Simple neural 0.9 0.77 0.84 11.8 1.0 3.3

PHybrid1 1.8 0.82 0.94 4.1 1.0 3.0

PHybrid2 3.5 0.70 0.79 14.9 1.5 3.4

PHybrid3 2.9 0.79 0.90 6.2 1.3 4.5

PHybrid4 1.6 0.82 0.85 10.4 0.9 2.7

PHybrid5 1.6 0.86 0.91 6.0 0.9 2.7

SHybrid1 1.7 0.75 1.10 �/7.5 1.4 3.9

SHybrid2 0.7 0.83 0.92 5.6 0.8 3.3

Fig. 19. Scatterplot of measured against predicted values of coke yield

using the best of the serial hybrid models (generalization set).

Fig. 20. Scatterplot of measured against predicted values of coke yield

using the best of the serial hybrid models (extrapolation set).

G.M. Bollas et al. / Chemical Engineering and Processing 42 (2003) 697�/713710



this event is calculated by:

pi�P(X �xi)�
Ni

N
; (A1)

and the entropy H (X ) of the variable X is defined by:

H(X )�
P

i pi ln(1=pi) if pi "0

0 if pi �0
:

�
(A2)

The conditional probability pij , namely the probabil-
ity of X taking the value xi while simultaneously

another variable Y is taking the value yj , is defined by:

pij �P(X �xi; Y �yj)�
Nij

N
; (A3)

where Nij is the number of cases, for which the condition

in the parenthesis is true. The conditional entropy of Y

when X is given, is defined by:

H(Y ½X )�
X

i;j

pij ln

�
pi

pij

�
: (A4)

It is obvious from the analysis above that in cases of

continuous variables there is a need to divide the input

domain of each variable into a finite number of

intervals, in which the variables are considered to have

a constant value. So we can convert a continuous

variable to a discrete one and apply the analysis made

above. In our efforts this finite number of intervals was

defined by the accuracy of the measurements for each
variable. The number n of intervals also defines the

maximum value of entropy, as it is shown in the

following equation:

H(X )max� ln(n): (A5)

The closer that the actual value of entropy is to its

maximum value, the better the representation of this

variable in the data set. Consequently, the model based

in this data set (the neural model in our case) will have

more possibilities for a good interpolation. The ratio of

the entropy to its maximum possible value expressed as

percentage (representation %) is shown in Table A1 for
all the variables used in this study.

When the conditional entropy criterion is being

implemented, so that the best subset of variables is

chosen, we try to choose these variables, which minimize

the conditional entropy or maximize the following ratio

(/U( �X )):

U( �X )�100
H(Y ) � H(Y ½ �X )

H(Y )
; (A6)

where H (Y ) is the entropy of information calculated in

Eq. (A2) for the variable Y , that is the variable which

the model tries to predict, and H(Y ½ �X ) is the conditional

entropy calculated in Eq. (A4), with �X having as
arguments the variables that are used to predict the Y

variable.

In this paper the definition of �X was done by the

following algorithm:

1) Calculate all the U( �X 1) for �X 1 consisting each time

of 1 variable

2) Choose this �X 1; which gives the maximum value of

U( �X 1)/

3) Calculate all the U( �X 2) for �X 2 consisting each time

of two variables one of which is the variable already
chosen in step 2.

4) Choose this �X 2 which gives the maximum value of

U( �X 2)/

5) Go on with triplets and so on until U( �X ) sufficiently

great.

Tables A2(a) and A2(b) present the results obtained

when the algorithm mentioned above was implemented:

(a) considering all the variables as possible candidates

for �X ; and (b) considering only the variables relative to

Table A1

Ratio of the entropy to its maximum possible value for all the variables

Variables Representation (%) (H (X )/H (X )max)

Specific gravity 67.1

MeABP 47.0

APS 80.0

ABD 80.0

CCR 95.4

Reactor temperature 87.0

Reactor pressure 87.7

Feed rate 68.9

Riser inject steam 61.4

Sulfur 76.3

Basic N2 58.9

RI 71.9

MAT 88.3

Conversion 71.4

Table A2(a)

Calculated U ratios using all the variables as candidates

Variables U (%)

RI 11.5

MeBP 69.4

SG 92.9

Feed rate 97.3

MAT 98.6

CCR 99.5

Basic N2 99.7

Sulfur 99.7

APS 99.7

ABD 99.7

Riser inject steam 99.7

Rector temperature 99.7

Reactor pressure 99.7
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feed and catalyst properties as possible candidates for

�X ; respectively.

Appendix B: Nomenclature

c coke yield wt.% on feed

C /O catalyst to oil ratio

dp catalyst particles mean diameter

D riser reactor diameter

fgw gas-wall Fanning friction coefficient

fsw solids-wall friction coefficient

Gs solids mass flux
K catalytic reaction kinetic constant

ko catalytic reaction pre-exponential factor

E catalytic reaction activation energy

Qg gas volumetric flow

Re Reynolds number for gas phase

Rep Reynolds number for solids phase

tc catalyst�/oil contact time

uo superficial gas velocity
ut single particle terminal velocity

WHSV weighted hourly space velocity

x conversion wt.% on feed

DPfg gas-wall frictional pressure drop

DPfs solids-wall frictional pressure drop

DPacc pressure drop due to solids acceleration

Dz riser reactor height

Greek symbols

o reactor void fraction

mg average gas viscosity

rg average gas density (reaction vapor mixture

and nitrogen)

rp catalyst particle density

Subscripts

g gas phase

s solids phase

p particle

Table symbols

MSE Mean Square Error

R2 R -squared of linear regression trendline
A the A factor of linear regression trendline (A �/

x�/B )

B the B factor of linear regression trendline (A �/
x�/B )

ARE Absolute Relative Error

MaxRE Maximum Relative Error
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